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Abstract

Monteiro Maia, João Pedro; Barbosa Raposo, Alberto (Advisor);
Hurtado Jauregui, Jan Jose (Co-Advisor). Improving the Ge-
neralization of Mammography Segmentation Models for
Multiple Equipments. Rio de Janeiro, 2024. 57p. Final Project
Proposal – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

Mammography, a low-dose x-ray technology for breast examination, is
the primary screening method for early detection of breast cancer, significan-
tly improving treatment success rates. Segmenting key structures in mam-
mography images can enhance medical assessment by evaluating cancer risk
and the quality of image acquisition. We introduce a series of data-centric
strategies to enrich the training data for deep learning-based segmentation of
landmark structures, such as the nipple, pectoral muscle, fibroglandular tissue,
and fatty tissue. Our approach involves augmenting training samples through
annotation-guided image intensity manipulation and style transfer, aiming for
better generalization than standard training methods. These augmentations
are applied in a balanced manner to ensure the model processes a diverse
range of images from di�erent vendor equipment while maintaining e�cacy
on the original data. We present extensive numerical and visual results de-
monstrating the superior generalization capabilities of our methods compared
to standard training. This evaluation uses a large dataset of mammography
images from various vendors. Additionally, we present complementary results
showing both the strengths and limitations of our methods in di�erent scena-
rios. The accuracy and robustness demonstrated in the experiments suggest
that our method is well-suited for integration into clinical practice.

Keywords
Mammography; Semantic segmentation; Deep learning; Generalization.



Resumo

Monteiro Maia, João Pedro; Barbosa Raposo, Alberto; Hurtado
Jauregui, Jan Jose. Improving the Generalization of Mam-
mography Segmentation Models for Multiple Equipments.
Rio de Janeiro, 2024. 57p. Proposta de Projeto Final – Departa-
mento de Informática, Pontifícia Universidade Católica do Rio de
Janeiro.

A mamografia, uma tecnologia de raio-X de baixa dose para exame das
mamas, é o principal método de triagem para a detecção precoce do câncer de
mama, melhorando significativamente as taxas de sucesso do tratamento. A
segmentação de estruturas-chave nas imagens de mamografia pode aprimorar
a avaliação médica ao avaliar o risco de câncer e a qualidade da aquisição de
imagens. Introduzimos uma série de estratégias centradas em dados para enri-
quecer os dados de treinamento para a segmentação baseada em aprendizado
profundo de estruturas de referência, como o mamilo, músculo peitoral, tecido
fibroglandular e tecido adiposo. Nossa abordagem envolve o aumento das amos-
tras de treinamento por meio da manipulação da intensidade da imagem guiada
por anotação e transferência de estilo, visando uma melhor generalização do
que os métodos de treinamento padrão. Essas ampliações são aplicadas de ma-
neira balanceada para garantir que o modelo processe uma ampla gama de
imagens de equipamentos de diferentes fornecedores, mantendo a eficácia nos
dados originais. Apresentamos resultados numéricos e visuais que demonstram
as capacidades superiores de generalização de nossos métodos em comparação
com o treinamento padrão. Esta avaliação utiliza um grande conjunto de dados
de imagens de mamografia de vários equipamentos. Além disso, apresentamos
resultados complementares que mostram as vantagens e as limitações de nossos
métodos em diferentes cenários. A precisão e robustez demonstradas nos ex-
perimentos sugerem que nosso método é adequado para integração na prática
clínica.

Palavras-chave
Mamografia; Segmentação semântica; Aprendizado profundo; Genera-

lização.
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1
Introduction

Mammography is a low-dose x-ray exam of the breast that is one of the
most e�ective screening tools available today [2]. Regular mammograms can
help find breast cancer at an early stage when treatment is most likely to be
successful. There are several types of mammography, and all of them produce
images to be analyzed by professionals [3].

Since mammography is a screening exam, it always produces a result that
needs to be interpreted visually. In this process, intelligent machines proved to
be able to assist professionals to achieve an astonishing correct identification
rate [4]. Several techniques are used to assist these professionals. One technique
that showed significant results is image segmentation. Although it can happen
in a 3D context, 2D is more common in mammography due to the fact that
most of the equipment generates 2D images [3].

Using image segmentation, we can identify and separate landmark struc-
tures of interest in mammography images, such as the nipple, the pectoral
muscle, the fibroglandular tissue, and the fatty tissue, which can be useful to
assist healthcare specialists in better interpreting these images. More precisely,
identifying these structures is useful in categorizing the risk of an abnormality
and evaluating image acquisition adequacy.

However, segmentation of mammography images can be challenging due
to various factors, such as the occlusion caused by the fibroglandular tissue,
the inclusion of the minor pectoral muscle, and the inclusion of skin folds,
among others. Although several methods have been proposed in the literature
to address medical image segmentation [5], a few ones were proposed to address
the segmentation of landmark structures in mammography images.

One of those methods was proposed in [6], where a deep neural network is
used to segment some landmark structures of interest. This method considers
a large private dataset for training and di�erent model architectures, including
the U-Net model. The results are promising in the processing of images
generated by specific equipment, i.e., General Electric equipment. However,
when processing non-similar images acquired using equipment of other vendors,
this method presents some limitations.

We propose a set of data-centric strategies to achieve better generaliza-
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tion on the processing of mammography images acquired using di�erent vendor
equipment. More precisely, we introduce augmentation procedures based on
image intensity manipulation and style-transfer methods, incorporating sam-
ples during training that enable the model to learn from diverse hypothetical
domains. We present extensive numerical and visual results on analyzing the
reference method, i.e. [6], and highlighting the benefits of the proposed strate-
gies. These results demonstrate the promising potential of our strategies, mak-
ing them strong candidates for integration into clinical practice.

The remainder of this document is structured as follows. Chapter 2
introduces some related work relevant to our proposal. Chapter 3 explains the
datasets that we will use for our experiments. Chapter 4 presents the reference
method [6] and its results on the selected datasets. Chapter 5 presents the
proposed methods. Chapter 6 presents numerical and visual results of the
proposed methods. Finally, Chapter 7 concludes this work.

This document is based on our manuscript titled “Improving the general-
ization of deep learning models in the segmentation of mammography images”,
which was submitted to the journal “Biomedical Signal Processing and Con-
trol”.



2
Related work

2.1
Mammography images segmentation

While the segmentation of abnormalities like masses or nodules in
mammography images is a common focus [7], our attention is directed towards
techniques that aim to identify key landmarks enabling the spatial description
of breast tissues.

The identification of the pectoral muscle serves as a crucial reference
point in the MLO view evaluation, aiding in the assessment of potential
abnormalities and the quality of the image acquisition. This anatomical
structures is typically represented by a triangular shape in the mammography
image corner. Its accurate segmentation is di�cult due to varying shapes
resulting from diverse anatomical conditions, occlusion from fibroglandular
tissue, interference from the minor pectoral muscle, and the presence of skin
folds, among other factors. Various methodologies have been introduced in
existing literature, leveraging conventional signal processing and statistical
analysis [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Rampun et al. propose
a multi-step approach involving a deep learning model for delineating the
pectoral muscle boundary, followed by post-processing steps to ensure precise
demarcation [19]. Similarly, Soleimani et al. introduce a deep learning model
for pectoral muscle boundary segmentation, complemented by graph-based
analysis for enhancement [20]. In contrast, Ali et al. achieve complete pectoral
muscle shape segmentation using a U-Net-based deep learning model instead
of focusing solely on boundary segmentation [21]. Guo et al. suggest a two-step
methodology utilizing a U-Net for identifying confident pectoral muscle regions
and a GAN for final shape estimation [22], while Rubio and Montiel present
a comparative study employing various deep learning models and metrics for
pectoral muscle segmentation, also considering breast shape [23]. Furthermore,
Yu et al. propose an innovative deep learning model incorporating an attention
mechanism, yielding superior outcomes compared to standard encoder-decoder
models.

The nipple constitutes another important landmark structure, facilitating



Chapter 2. Related work 12

the registration of multiple views or modalities by enabling e�cient region
matching and anatomical measurements. Various methodologies employ shape
and texture analysis across di�erent regions of the breast boundary [24, 25, 26,
27]. Techniques presented in [28] and [29] operate under the assumption that
the fibroglandular tissue converges at the nipple, leading to the development
of geometric descriptors for optimal convergence point detection. Casti et al.
introduce a Hessian-based approach incorporating geometric descriptors and
constraints to accurately define the nipple’s position [30]. Jiang et al. propose a
random forest classifier that leverages quantitative radiomic features to identify
subtle nipples and determine relevant regions of interest [31]. Lin et al. propose
a deep learning classification model applied to a series of candidate patches
extracted from mammography images, where the region with the highest
density of classified potential nipple patches is selected as the nipple position
[32]. These methods are focused on pinpointing the precise location of the
nipple rather than segmenting it.

The fibroglandular tissue represents a critical area of concern warranting
specific attention during medical assessments. Depending on the patient’s
unique anatomy, this tissue can exhibit varying characteristics, ranging from
dense formations to more dispersed patterns, with higher density correlating
to increased risk. Numerous methodologies have been proposed in the existing
literature for segmenting dense fibroglandular tissue regions [33], encompassing
both handcrafted approaches [34, 35, 36, 37] and data-driven models [38, 39,
40, 41, 42]. While dense regions are of utmost concern, it is also crucial for
clinical practitioners to be attentive to scattered areas, as abnormalities can
manifest there as well. Therefore, the segmentation of both dense and scattered
regions plays a vital role in accurately describing the spatial composition of
the breast.

Several methodologies aim to integrate the segmentation of various land-
mark structures within a unified framework. Tiryaki et al. conduct experiments
employing multiple U-Net-based models to segment the pectoral muscle, dense
fibroglandular tissue regions, and adipose tissues [43]. In a similar vein, consid-
ering these structures and incorporating the nipple, Dubrovina et al. introduce
a novel deep learning-based framework for comprehensive segmentation tasks
[44]. By leveraging multiple deep learning models, Bou demonstrates segmenta-
tion results encompassing more intricate structures, including vessels, calcifica-
tions, and skin, among others [45]. However, due to the utilization of relatively
small datasets, the robustness and reliability of these methods in real-world
applications might be limited. Additionally, the first two approaches primarily
concentrate on the MLO view, a trend shared by most segmentation methods
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detailed in this section.
In a recent development, Sierra-Franco et al. [6] unveiled a sizable dataset

alongside deep learning experiments for the segmentation of mammography
images, encompassing both MLO and CC views. The study highlights four
primary structures of interest in both views: nipple, pectoral muscle, fibrog-
landular tissue, and fatty tissue. We propose a data-centric approach for the
improvement of the generalization of the solution introduced in this work on
the processing of mammography images generated by di�erent vendor equip-
ments. Although our experiments are performed on the MLO view only, our
method is extendable to the CC view also.

2.2
Data augmentation

Data augmentation plays a pivotal role in working with diverse datasets,
especially in the medical field, where datasets often su�er from imbalances and
limited samples for certain structures and classes. Basically, when dealing with
images, we can divide the data augmentation in two types [46], transforming
the original data and generating artificial samples.

Commonly used methods for image transformation include a combina-
tion of simple a�ne transformation ( such as mirroring, zooming, and resizing),
which are applied directly to the images. We can also use erasing transforma-
tions to "crop-out" certain portions of the image to avoid simplified detection
patterns.

More advanced image transformation done in images are the Greedy
Policy Search (GPS) and Mixup. GPS is a method that searches for the optimal
augmentation policy by maximizing the validation accuracy of a model. Mixup
is a method that generates new training samples as convex combinations of
pairs of original samples [47]

Generating artificial/synthetic samples open room for more possibilities,
since it overcomes the constrains of transformations. Generative networks are
today the most common approach to medical image synthesis [46, 48].

Overall, the use of data augmentation techniques demonstrates a con-
sistent pattern of advantages, as evidenced by the findings in Garcea’s study
[46]. These benefits are observed across various modalities and tasks within
the domain of medical image segmentation and remain consistent across a
broad spectrum of augmentation techniques, ranging from fundamental a�ne
transformations to advanced generative methods. Consequently, the integra-
tion of data augmentation proves to be a valuable resource when confronted
with diverse datasets.
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2.3
Style transfer

Style transfer is a powerful technique in the realms of computer vision
and graphics, enabling the creation of new images by blending the content of
one image with the stylistic elements of another [49].

One common way to implement style transfer is by utilizing neural
networks. These networks take as input a content image and one or more
style images, alongside an additional vector that specifies the degree to which
each style should be applied to the content image. The output is a visually
image that combines the content of the source image with the artistic style of
the other(s).

The application of style transfer extends beyond the realm of artistry;
it has proven to be particularly beneficial in data augmentation, which is
essential for machine learning tasks involving small datasets. Style transfer,
when used as a form of data augmentation, adds diversity and variability to
the training dataset, thus enhancing model performance. By preserving the
high-level semantic content of the content image while adopting the style of
the reference image, neural style transfer e�ectively enriches the training data,
making it a valuable tool for improving the performance of models in image
classification tasks.

A notable study in this context is the STaDA (Style Transfer as Data
Augmentation) paper by Zheng et al. [50]. In their research, they explore the
use of state-of-the-art neural style transfer algorithms as a data augmentation
technique for image classification tasks. Their experiments, conducted on
datasets like Caltech 101 and Caltech 256, yielded significant improvements in
image classification accuracy when compared to traditional data augmentation
methods. For instance, they reported an approximate 2% increase in accuracy
with the VGG-16 model. To maximize the benefits, they also combined neural
style transfer with conventional data augmentation strategies, achieving even
better performance in image classification.

An alternative approach to data augmentation through style transfer is
presented in [51]. This method o�ers an e�cient and annotation-free way to
enhance image datasets. The process involves targets mask generation, style
transfer, and the addition of details to images. One distinct feature is that it
doesn’t require additional manual annotation work. This technique was suc-
cessfully applied to create a dataset of military vehicle images, and the results
were impressive. In high-contrast situations, they achieved improvements in
precision by 0.101, while in low-contrast situations, they improved precision
by 0.134. These improvements were observed when using both single-style and
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multi-style stylized image datasets.
These works demonstrate the potential of style transfer in computer

vision fields, such as helping to reduce the di�culty of collecting su�cient
labeled data and improving the performance on small datasets.



3
Datasets

Typically, mammography examinations consist of two primary views:
Medio-Lateral Oblique (MLO) and Cranio-Caudal (CC), which are taken for
both breasts. These imaging modalities provide both a top-to-bottom and side-
on perspective of the breast, enabling a comprehensive analysis from multiple
angles. These views capture critical anatomical structures that are essential
for detecting abnormalities and assessing the quality of image acquisition. For
this work, we mainly consider the MLO view.

We consider MLO view digital mammography images from the private
dataset introduced in [6] and the VinDr-Mammo dataset introduced in [52].
We compose four di�erent datasets, each one representing a di�erent vendor
of mammography equipments. These datasets are named as GE, IMS, PLAN-
MED, and HOLOGIC, containing MLO view mammography images generated
by equipments of the General Electric, IMS Giotto, Planmed Oy, and Hologic
vendors, respectively.

The primary purpose of these datasets is image segmentation, and it
includes annotations for four major landmarks: the nipple, pectoral muscle,
fibroglandular tissue, and fatty tissue. A team of eight annotators received
training from two clinical experts to identify and delineate these structures
accurately using a contour drawing tool. Then, these contours, represented as
polygons, are rasterized to generate a multi-class label map for each structure.
All the left breast images are horizontally flipped to simplify the input domain.
For further details about this annotation process and how the label maps are
generated, please refer to [6].

Trying to uniformize the input images, all the images follow the prepro-
cessing stablished in [6]. The mammography images are normalized using the
percentiles 2 and 98 as minimum and maximum values, then equalized using
Contrast Limited Adaptive Histogram Equalization (CLAHE) [53] with kernel
size being 1/8 of the height and width of the image, and finally re-scaled to
the range [0, 255]. For the IMS and PLANMED datasets, we include additional
processing due to the di�erent image format that is adopted for these cases.
Figure 3.1 shows an example of the pre-processed image and its corresponding
label map.
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Figure 3.1: Pre-processed image and its corresponding label map. The nipple is
colored in green, the pectoral muscle is colored in blue, the fibroglandular tissue
is colored in magenta, the fatty tissue is colored in yellow, and the background
is colored in black.

Although, we present di�erent datasets, we just consider the GE dataset
for the training task. The other datasets are used for testing purposes only. A
fully detailed specification of each dataset is presented in the following sections.

3.1
GE dataset

A collection of 5214 MLO view mammography images was selected to
construct this dataset, belonging to the acquisition of three types of GE
equipments: Senographe Essential, Senograph DS, Senographe Pristina, and
Senographe Crystal. All of these equipments present similar images that were
fully annotated and pre-processed using the standard method explained above.
Figure 3.2 shows some samples of this dataset.

The annotated samples are split into the three standard subsets consid-
ered in a conventional supervised learning pipeline: training, validation, and
test. The splitting process follows a random behavior with certain balancing
regarding the fibro-glandular tissue density and avoiding data leakage, i.e. we
avoid including the same accession number in di�erent sets. This distribu-
tion results in 3450 samples for training (≥ 70%), 1206 samples for validation
(≥ 20%), and 557 samples for test (≥ 10%). We use this dataset for both
training and testing purposes.

3.2
IMS dataset

This dataset considers a collection of 52 MLO view mammography images
acquired using the GIOTTO CLASS and GIOTTO IMAGE 3DL equipments.
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Figure 3.2: Image samples.

Di�erently from the GE images, for this dataset, we included an additional step
for pre-processing because of the di�erent formats. As the first pre-processing
step, we use the window center and window width metadata to rescale the
intensity values. Let us denote as c the window center and w the window
width. The rescaling minimum xmin and maximum values xmax are computed
as follows: xmin = c ≠ Âw/2Ê ≠ Â0.25wÊ and xmax = c + Âw/2Ê. The rest of the
steps are the same as explained above. Figure 3.2 shows some samples of this
dataset. In this work, this dataset is used for testing purposes only.

3.3
PLANMED dataset

In this dataset, we include 48 MLO view mammography images acquired
using the Planmed Nuance equipment. As in the IMS case, we also include an
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additional first step for pre-processing due to the image format that presents
inverted values. Thus, we adopt the following minimum and maximum values
to rescale the negative version of the input image: xmin = ≠(c + Âw/2Ê +
Â0.25wÊ) and xmax = ≠(c ≠ Âw/2Ê). The rest of the steps are the same as
explained above. Figure 3.2 shows some samples of this dataset, which is also
used for testing purposes only.

3.4
HOLOGIC dataset

This dataset includes a collection of 34 MLO view mammography images
acquired using Selenia Dimensions equipment. In this case, these images follow
the standard pre-processing pipeline, as in the GE case. Figure 3.2 shows some
samples of this dataset. We use this dataset for testing purposes only.



4
Mammography image segmentation

In this chapter, we present the reference approach proposed in [6], which
modeled the problem as a semantic segmentation task that can be tackled
using deep learning models. More precisely, we describe a baseline model and
its corresponding training settings, numerical results on the di�erent datasets,
and visual results useful to discuss the benefits and drawbacks of this method
in the processing of mammography images of di�erent vendors’ equipment.

4.1
Model training

While [6] presents diverse experiments involving various deep learning
model architectures and training configurations, this study adopts as baseline
a U-Net architecture in conjunction with an E�cientNetB3 model serving as
a feature extractor (backbone). The network input consists of a single-channel
image with dimensions 384 ◊ 384, with intensity values in the range [0, 1].
The network’s output takes the form of a 384 ◊ 384 ◊ C per-pixel probability
map, where C is the number of classes, encompassing an implicit background
class for unannotated pixels. Given that the segmentation task is treated as
a multi-class per-pixel classification problem, the final layer incorporates a
softmax activation function. For the training phase, we employe a hybrid loss
function combining Categorical Focal Loss and Jaccard Loss functions, with a
batch size of 4, learning rate of 10≠3, and a maximum of 200 epochs, integrating
early stopping with a patience of 30.

The model is trained on the GE training set without considering augmen-
tation operations and using the GE validation set to select the best weights
regarding the loss function. Figure 4.1 shows the training evolution through
the epoch, where we can see that the model rapidly converges due to the high
amount of images and the best weights are obtained in the 15th epoch.

4.2
Numerical results

To evaluate the model, we consider the di�erent datasets presented
in the previous chapter that represent mammography images of di�erent



Chapter 4. Mammography image segmentation 21

Figure 4.1: Baseline model training evolution through the epochs. The x-axis
represent the epochs and the y-axis represents the loss values. The training set
loss is shown in blue while the validation set loss is shown in orange.

Table 4.1: Baseline approach IoU results

Dataset Nipple Pectoral
Fib.

Tissue

Fat.

Tissue
Mean

GE (validation) 0.7641 0.9695 0.9116 0.8401 0.8713
GE (test) 0.7488 0.9608 0.9069 0.8078 0.8561

IMS 0.7401 0.9165 0.7120 0.6070 0.7439
PLANMED 0.7015 0.9432 0.7736 0.5962 0.7536
HOLOGIC 0.1463 0.7677 0.6487 0.4192 0.4955

vendors’ equipment. We use the metric Intersection Over Union (IoU) which
is a widely used metric for the semantic segmentation evaluation (For more
details about this metric, please refer to Chapter 5). This metric measures
the degree of overlap between the segmentation prediction and the ground-
truth segmentation (annotation). Thus, we can apply this metric to each class,
obtaining IoU scores for each structure.

Table 4.1 shows the IoU results on the di�erent datasets. As expected, the
model presents good results on the validation and test sets of the GE dataset,
similar to the results found in [6]. We can see pectoral muscle IoU scores close
to 0.96 and fibroglandular tissue results close to 0.91. The nipple seems to be
the most challenging structure; however, it presents lower values because it is
a small structure that tends to be more sensitive to the metrics. Thus, this is
a good model for the segmentation of mammography images generated by GE
equipments. Recall that during training, we just use GE images.

In contrast, we can see that the results over the IMS, PLANMED and
HOLOGIC datasets are considerably worse in average, especially in the HO-
LOGIC case. This means that the model do not present a good generalization
when working with images generated by di�erent vendors equipment. This is
mainly caused by the image di�erences that are not considered during training.
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Figure 4.2: GE results. Each row represents a di�erent case. First column: input
image. Second column: ground-truth annotation. Third column: prediction.
Fourth column: uncertainty map (hot color map with values in the range [0, 1]).

4.3
Visual results

Figures 4.2, 4.3, 4.4, and 4.5, show some visual results on GE, IMS,
PLANMED, and HOLOGIC images, respectively. In addition to the predicted
structures, we are showing an uncertainty map computed using Test Time
Augmentation (TTA) that allows us to highlight the regions where the model
presents high uncertainty (For more details about the uncertainty map com-
putation, please refer to Chapter 5). In other words, the highlighted regions
are the regions where the model presented more doubts.

In the GE case, we can see how the predictions are close to the ground-
truth annotations and the uncertainty maps are well behaved, i.e. the high-
lighted regions are close to the prediction boundaries, which is an expected
behavior of a good segmentation. Di�erently, for the other vendors, we can
see noisy predictions and chaotic uncertainty maps that highlight thick re-
gions in most cases. These prediction noise and uncertainty map chaoticity are
indicators that the model is not performing well on these cases.

Further, Figure 4.6 shows some predictions on mammography images
obtained from the DDSM dataset [54] that were generated using screen-film
technology. All our datasets consider digital mammography technology. Notice
how the model generates noisy and inaccurate predictions.
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Figure 4.3: IMS results. Each row represents a di�erent case. First column:
input image. Second column: ground-truth annotation. Third column: predic-
tion. Fourth column: uncertainty map (hot color map with values in the range
[0, 1]).

Figure 4.4: PLANMED results. Each row represents a di�erent case. First
column: input image. Second column: ground-truth annotation. Third column:
prediction. Fourth column: uncertainty map (hot color map with values in the
range [0, 1]).
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Figure 4.5: HOLOGIC results. Each row represents a di�erent case. First
column: input image. Second column: ground-truth annotation. Third column:
prediction. Fourth column: uncertainty map (hot color map with values in the
range [0, 1]).

Figure 4.6: Screen-film mammography results. Each column represents a
di�erent case. First row: input images. Second row: predictions.
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4.4
Discussion

Based on these results, we can see that training on the GE dataset
presents several limitations when dealing with images generated by other ven-
dor equipments, where the corresponding model presents noisy predictions and
large high uncertainty areas. Enhancing this model to optimize its performance
in processing images from diverse vendor equipment could significantly con-
tribute to its successful integration into clinical practice.



5
Improving the generalization of segmentation models

The model proposed in [6] is e�ective, yet, as discussed in the previous
chapters, there is room for improvement, particularly when handling datasets
with images generated by equipment from non-GE vendors. Currently, the
model performs well on one dataset (GE) but falls short on others, especially
those with more diverse exam images.

As shown in the data analysis, the GE dataset contains nearly 5000
images, whereas the other datasets (from di�erent equipment) only have 50-
100 images each. This disparity makes it challenging to validate our models
confidently, as there are insu�cient samples for reliable training, testing, and
validation. Additionally, training separate models for each type of equipment
is not practical for real-world applications, as it introduces new issues, such as
requiring users to know which model to use.

To address these challenges, we employ advanced data augmentation
methods on the large GE dataset. Our goal is to develop a single model
that performs well across various type of images. Instead of relying solely on
basic a�ne transformations like cropping and resizing, we explore the use of
image intensity manipulation and style transfer to incorporate samples that
approximate a variate domain of images. By training the model with these
synthetic samples, we aim to enhance its performance and generalization.
We introduce two distinct methodologies for this improvement, along with
a combined approach.

5.1
Annotation-guided image manipulation for data augmentation

Data augmentation is usually related to applying random image trans-
formations to the existing samples to achieve better generalization and ro-
bustness. The characteristics of the target domain guide the selection of these
transformations we aim to represent. Thus, we propose a set of operations for
manipulating image intensity values, enabling better representation of non-GE
images.
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Algorithm 1 Image manipulation
1: procedure manipulate(Iin,Mnip,Mfib,Mfat,Mb)
2: I = rand(0.8, 1.2) ú Iin
3: if rand(0, 1) < 0.5 then
4: return I
5: µnip = mean(I, Mnip)
6: µfat = mean(I, Mfat)
7: µfib = mean(I, Mfib)
8: pfat = percentile5(I, Mfat)
9: amin = clip(rand((pfat ≠ 20), (pfat + 20)), 0, 255)

10: b = 0.7µfat + 0.3µfib
11: if amin > (µnip ≠ 5) then
12: amin = max(0, (µnip ≠ 5))
13: else if rand(0, 1) < 0.5 · (µnip ≠ 5) < b then
14: amin = rand(max(0, (µnip ≠ 5)), µnip)
15: amax = percentile98(I)
16: Iout = rescale_intensity(I, (amin, amax), (0, 255))
17: if rand(0, 1) < 0.5 then
18: Iout[Mb] = 0
19: if rand(0, 1) < 0.5 then
20: Iout = add_label(Iout)
21: return Iout

5.1.1
Generation of augmented samples

The general idea of our custom image augmentation procedure is to
rescale the intensity values using the information of the annotated structures.
Algorithm 1 summarizes this procedure, which receives as input an image Iin,
the binary mask Mnip of the nipple, the binary mask Mfib of the fibroglandular
tissue, the binary mask Mfat of the fatty tissue, and the binary mask Mb of
the background, and returns a manipulated version of I, i.e. Iout.

The function mean(I, M) computes the mean intensity of I considering
the values within the mask M only. The function percentile5(I, M) computes
the 5th percentile of the values of I within the mask M. The function
percentile98(I) computes the 98th percentile of the intensity values of I. The
function rand(xinit, xend) generates a random float value between xinit and xend.
The function clip(xval, xinit, xend) is the classic clip function that limits the value
xval within the range [xinit, xend]. The function

rescale_intensity(I, (xmin, xmax), (ymin, ymax))

rescales the intensity values of I to the range [ymin, ymax], considering xmin and
xmax the minimum and maximum values for I, respectively. The operation
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Figure 5.1: Image manipulation example. The most left image is the image
Iin. The other images are di�erent results of applying the image manipulation
algorithm.

I[M] = x assigns the value x to all elements of the image I that fall within the
mask M. Finally, the function add_label(I) adds a synthetic view label to the
image, considering a random location close to the top-left corner.

The intuition of this augmentation procedure is to achieve higher contrast
within the breast region, simulating the behavior noticed in the non-GE
equipment images. This manipulation uses local intensity statistics of the
annotated structures to achieve robustness and avoid erasing regions of interest
from the image, such as the nipple. Further, as shown in Figure 4.5, HOLOGIC
images always include a label describing laterality and view position. For this
reason, we randomly add a synthetic label to simulate this case. Figure 5.1
shows some examples of our custom augmentation procedure.

5.1.2
Segmentation model training settings

To train the segmentation model, we use the same settings described
in Chapter 4 and include the custom image intensity manipulation procedure
across all training and validation images. This annotation-guided augmenta-
tion method allows us to modify images in a context-aware manner, enhancing
the model’s ability to generalize across multiple vendor scenarios.
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5.2
Style transfer-based data augmentation

Style transfer synthesizes novel images by merging the content of one
image with the style of another. Various deep learning frameworks provide
pre-trained models for style transfer, which can be fine-tuned to specific styles.
Once trained, these models can e�ectively transfer the learned style to any
input image, serving as an e�ective tool for data augmentation.

We aim to use style transfer to generate images resembling those from
the non-GE equipment datasets, creating three di�erent stylization models
that adapt GE images to the IMS, PLANMED, and HOLOGIC styles. Then,
using these models, we augment the training dataset to enhance generalization.

5.2.1
Style transfer model training

First, we select a reference image for each non-GE dataset, i.e. IMS,
PLANMED, and HOLOGIC. These images are shown in Figure 5.2. Then, we
fine-tune the model MLStyleTransfer from Apple’s CreateML framework [55]
to capture the style of each selected image. This fine-tuning process results in
three distinct models, each capable of processing a 512 ◊ 512 3-channel image
and producing a similarly dimensioned stylized output. The models are fine-
tuned over 550 iterations, a style strength of 6, and a style density of 256. We
validated the training process by visually assessing the stylized results on GE
images.

5.2.2
Generation of augmented samples

After training the models, we apply them to the entire GE training set to
create synthetic images based on IMS, PLANMED, and HOLOGIC styles. To
prepare these images for segmentation model training, we convert the stylized
images into 384 ◊ 384 single-channel images, which are the required input of
our segmentation model. Additionally, to mitigate artifacts generated during
the stylization process, we zero out all pixels within the annotated background
region. Figure 5.3 illustrates the post-processing operation, while Figure 5.4
shows examples of the stylization process using the three models.

5.2.3
Segmentation model training settings

To train the segmentation model using the stylized images, we keep the
same settings described in Chapter 4. Throughout the training process, we aim
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Figure 5.2: HOLOGIC, PLANMED and IMS base images used to train style
transfer models

Figure 5.3: Postprocessing of stylized images. First column: annotated regions,
where the background is colored in black. Second column: original image. Third
column: stylized image. Fourth column: postprocessed image.

to achieve a balanced distribution between the original and various stylized
image versions. As a result, each sampled input is equally likely to be either
an original, IMS stylized image, PLANMED stylized image, or HOLOGIC
stylized image, with a 25% probability for each category. The same processing
is applied to the validation set.

5.3
Combining image manipulation with style transfer

Both image manipulation and style transfer strategies o�er unique ad-
vantages and drawbacks. Combining these methods can yield a more robust
approach that enhances the segmentation model’s generalization capabilities.
We implement a straightforward combination by allocating a 20% probability
to each category of images: original, image manipulation results, and stylized
images from IMS, PLANMED, and HOLOGIC datasets. As with previous
cases, we preserve the same settings presented in Chapter 4 to train the seg-
mentation model, applying this augmented approach to both the training and
validation sets.
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Figure 5.4: Style transfer examples. Each row is a di�erent case. First column:
original GE image. Second column: IMS stylization results. Third column:
Second column: PLANMED stylization results. Second column: HOLOGIC
stylization results.



6
Results

6.1
Evaluation methodology

To evaluate the performance of the trained models, we consider numerical
metrics and visual representations that are explained in the following.

6.1.1
Numerical metrics

In our proposal, evaluation techniques play a crucial role. Our aim is to
create a model that outperforms the baseline model introduced in [6] on the
same dataset, across various structures and datasets. To gauge the e�ectiveness
of our solution, we will evaluate it on di�erent metrics, compare the results
with the baseline model, and assess the performance of our solution.

We will consider a range of metrics that highlight di�erent aspects of
image segmentation. The following subsections will outline these metrics, their
basic aspects, and their workings.

6.1.1.1
Precision and Recall

Precision and recall are important metrics for evaluating many machine
learning models. These metrics rely on a confusion matrix that summarizes a
model’s performance by comparing the true labels to the predicted ones.

According to the Google Machine Learning Developer Site [56], preci-
sion addresses the question: “What proportion of positive identifications was
actually correct” This can be expressed using the following formula:

Precision = TP

TP + FP

Here, TP represents true positives (correctly identified positive in-
stances), and FP stands for false positives (incorrectly identified positive in-
stances).
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On the other hand, recall attempts to answer the question: “What
proportion of actual positives was identified correctly?” Mathematically, it is
defined as:

Recall = TP

TP + FN

In this equation, FN represents false negatives (actual positive instances
that were incorrectly classified as negative).

These two metrics are particularly helpful in the classification context,
however, we can adapt it to work in our image segmentation scenario. One way
of doing so is to compare the number of correct pixels for each label in both
the ground-truth and predicted masks.

Our proposal includes these two metrics to draw a precision and recall
curve over di�erent datasets and compare their performance.

6.1.1.2
Accuracy score

Accuracy is a metric calculated by dividing the number of correct
predictions by the total number of predictions.

Accuracy = TP + TN

TP + TN + FP + FN

It is important to note that accuracy may not always be the best metric
to use, especially in cases where the classes are imbalanced which is our case.
However, this metric can still be used for comparison purposes. Our proposal
includes using it to evaluate the proposed performance over the baseline as
well as to compare it with di�erent training techniques.

6.1.1.3
Dice coe�cient (F1-score)

The F1-score is widely used for measuring the performance of image
segmentation algorithms. It builds on top of both precision and recall metrics
to calculate the Jaccard Index (IoU), which we’ll discuss later, and the
Dice Similarity Coe�cient (DSC). Both of these metrics measure the overlap
between the predicted and ground truth masks.

The Dice Coe�cient, also called the “Sørensen–Dice coe�cient”, mea-
sures the similarity between two sets, and in our context, measures the simi-
larity between two masks. It is calculated by the following formula:

Dice Coe�cient = 2 · TP
2 · TP + FP + FN
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The Dice Coe�cient is very appropriate for imbalanced datasets since it
is more sensitive. Therefore, it is going to be an important metric to compare
our model over the baseline.

6.1.1.4
Intersection over Union

The Intersection over Union (IoU), also known as Jaccard Index, is
calculated using the area of the intersection over the union of the predicted
segmentation and the ground truth. It was the main metric used in [6] for
evaluation. The score can be computed using the following formula:

IoU (Jaccard Index) = TP
TP + FP + FN

Nevertheless, both the F1 and the IoU are positively correlated for any
fixed ground-truth. That is to say, if our model is better than the other one
under the F1 metric, it is also better under the IoU metric. However, this does
not mean that we do need both of them or we can arbitrarily which one we
will use.

The di�erence between these metrics appears when dealing with a set of
inferences that are not very similar. When quantifying how much worse one
model is compared to another. In general, the IoU metric tends to penalize
isolated instances of poor classification more severely than the F1-Score, even
when both metrics agree that a specific instance is bad. Therefore, the F1-
Score tends to measure something closer to the average performance, while
the IoU score leans towards measuring worst-case performance.

Since we have a highly imbalanced dataset, both metrics will be used
to evaluate the performance of our model. We want to have a better overall
performance, but achieving a higher worst-case performance is also promising.

6.1.1.5
Hausdor� distance

The Hausdor� distance measures how far two subsets of a metric space
are from each other. Two sets of points are close in the Hausdor� distance if
every point of their set is close to some point of the other set. We can express
this distance as the longest distance one needs to travel anywhere in set A to
reach the set B.

The Hausdor� distance is a widely used performance measure to calculate
the distance between two point sets in medical image segmentation. It is used
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to compare ground truth images with segmentation results and allows ranking
di�erent segmentation results.

Another important property is that Hausdor� distance should be pre-
ferred for in segmentation tasks with complex boundaries and small, thin seg-
ments, as demonstrated in the literature [57]. This characteristic makes it
suitable for our scenario where fine details matter, such as the boundaries of
anatomical structures like nipples. Therefore, we will use it to evaluate our
model performance.

6.1.2
Visual evaluation

There is no way we can fully interpret the results of a vision model
without a visual inspection. To perform a visual inspection we show the
predicted labels for a given input image as well as the corresponding ground-
truth labels. This method proved to be very e�ective in [6] since it can show
where we can improve our model.

6.1.2.1
Uncertainty map

Uncertainty maps reveal areas where our model encounters di�culty in
determining the appropriate mask. Typically, these uncertainties are more
pronounced in the border regions of our labels. One method for generating
an uncertainty map involves employing Test-time Augmentation (TTA). This
process entails applying a series of random transformations to the input
image during evaluation, resulting in multiple variations of the original image.
The model then makes predictions on this augmented dataset, and the final
prediction is derived by averaging the predictions from all the augmented
images.

TTA can also serve as a tool to gauge the uncertainty of the model’s
predictions. By employing TTA, we can compute an uncertainty map that
accentuates regions where the model exhibits significant uncertainty. This map
is generated by calculating the variance or entropy of predictions across the
augmented images. Regions displaying high variance or entropy correspond to
areas where the model struggles to ascertain the correct segmentation [58].

This technique was used in Chapter 4, particularly in Figures 4.2, 4.3,
4.4, and 4.5. As mentioned earlier, some datasets exhibit noisy uncertainty
maps, signifying that this model is unsure about most parts of those datasets.
Since our goal is to enhance generalization to other models in our proposal,
achieving less noisy results would represent a significant improvement.
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6.2
Experiment settings

We use the datasets described in Chapter 3 to compare the methods we
proposed in this work with the baseline method outlined in Chapter 4. We
assess numerical performance using six standard metrics commonly used for
evaluating semantic segmentation methods. These metrics include precision,
recall, accuracy, Dice coe�cient (F1-Score), IoU, and Hausdor� distance.
Specifically, for the Hausdor� distance, we calculate the average of the two one-
sided Hausdor� distances between the prediction and ground-truth structure
contours in meters. We then present the metric values for each structure of
interest by averaging these measurements across all tested images. We also
present a mean value representing all the structures, excluding the background
class. For visual analysis, we present the predictions and uncertainty maps as
illustrated in Chapter 4.

6.3
Generalization and segmentation accuracy results

Tables 6.1, 6.2, 6.3, and 6.4 present the numerical results for the GE,
IMS, PLANMED, and HOLOGIC datasets, while Figures 6.1, 6.2, 6.3, and
6.4 illustrates the corresponding visual results.

The numerical results from the GE dataset (Table 6.1) show that the
proposed data augmentation methods perform comparably to the baseline
method. This results suggests that the proposed approaches do not degrade
performance on this type of images. Moreover, they yield improved segmenta-
tion for the pectoral muscle, which is one the most important structures for
mammography positioning analysis. Figure Figure 6.1 illustrate the consistent
quality of predictions across various anatomies, even in complex cases when
the nipple overlap other tissues.

The image manipulation method presents better mean numerical results
than the baseline on the PLANMED and IMS datasets, as shown in Tables 6.2
and 6.3. However, in the specific case of the nipple structure, we can see
performance degradation. Thus, this is not the ideal method for these images
when considering applications that require a good approximation of the nipple.
In the case of the HOLOGIC dataset, which is the most distant from the
GE dataset in terms of image similarity, we can see superior performance
when compared to the baseline and to the style transfer method. This is more
evident in the nipple structure, where the Dice, IoU, and Hausdor� metrics
highlight this superiority. Further, as shown in Figure 6.4, the synthetic labels
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Table 6.1: Numerical results on the GE dataset (test)

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Precision

Baseline 0.8349 0.9909 0.9491 0.8990 0.9185

Image manipulation 0.8441 0.9830 0.9557 0.8892 0.9180
Style transfer 0.8212 0.9866 0.9614 0.8707 0.9100
Combination 0.8409 0.9871 0.9443 0.8972 0.9174

Recall

Baseline 0.8867 0.9695 0.9543 0.8880 0.9246
Image manipulation 0.8632 0.9799 0.9479 0.9068 0.9244

Style transfer 0.8807 0.9773 0.9341 0.9165 0.9272

Combination 0.8610 0.9741 0.9546 0.8890 0.9197

Accuracy

Baseline 0.9995 0.9971 0.9798 0.9757 0.9880
Image manipulation 0.9994 0.9972 0.9799 0.9760 0.9881

Style transfer 0.9994 0.9972 0.9783 0.9743 0.9873
Combination 0.9994 0.9972 0.9786 0.9750 0.9876

Dice

Baseline 0.8464 0.9780 0.9496 0.8882 0.9156

Image manipulation 0.8367 0.9799 0.9497 0.8931 0.9149
Style transfer 0.8344 0.9808 0.9450 0.8877 0.9120
Combination 0.8358 0.9789 0.9473 0.8878 0.9124

IoU

Baseline 0.7488 0.9608 0.9069 0.8078 0.8561

Image manipulation 0.7344 0.9634 0.9070 0.8150 0.8550
Style transfer 0.7316 0.9644 0.8988 0.8061 0.8502
Combination 0.7333 0.9623 0.9024 0.8061 0.8510

Hausdor�

Baseline 0.0019 0.0038 0.0192 0.0141 0.0098
Image manipulation 0.0020 0.0046 0.0106 0.0134 0.0076

Style transfer 0.0020 0.0036 0.0110 0.0137 0.0076
Combination 0.0020 0.0039 0.0110 0.0139 0.0077

Figure 6.1: Visual results on the GE dataset (test). Each row represents a
di�erent case. First column: input image. Second column: baseline result.
Third column: image manipulation result. Fourth column: style transfer result.
Fifth column: image manipulation and style transfer combination result. Sixth
column: ground-truth annotation.
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Table 6.2: Numerical results on the IMS dataset

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Precision

Baseline 0.9139 0.9971 0.7207 0.9149 0.8867
Image manipulation 0.8220 0.9853 0.8021 0.8941 0.8759

Style transfer 0.8859 0.9779 0.8768 0.9159 0.9142

Combination 0.8981 0.9853 0.8226 0.9294 0.9088

Recall

Baseline 0.7979 0.9191 0.9855 0.6411 0.8359
Image manipulation 0.7871 0.9771 0.9837 0.7805 0.8821

Style transfer 0.8844 0.9824 0.9537 0.8646 0.9213

Combination 0.8290 0.9765 0.9815 0.8043 0.8978

Accuracy

Baseline 0.9995 0.9943 0.9692 0.9638 0.9817
Image manipulation 0.9994 0.9975 0.9802 0.9738 0.9877

Style transfer 0.9996 0.9974 0.9860 0.9818 0.9912

Combination 0.9996 0.9975 0.9824 0.9781 0.9894

Dice

Baseline 0.8473 0.9540 0.8287 0.7506 0.8451
Image manipulation 0.7925 0.9806 0.8807 0.8313 0.8713

Style transfer 0.8794 0.9797 0.9103 0.8876 0.9143

Combination 0.8545 0.9803 0.8916 0.8598 0.8965

IoU

Baseline 0.7401 0.9165 0.7120 0.6070 0.7439
Image manipulation 0.6679 0.9628 0.7902 0.7150 0.7840

Style transfer 0.7904 0.9608 0.8378 0.8001 0.8473

Combination 0.7545 0.9621 0.8080 0.7573 0.8205

Hausdor�

Baseline 0.0123 0.0148 0.0346 0.0253 0.0218
Image manipulation 0.0025 0.0068 0.0156 0.0210 0.0115

Style transfer 0.0227 0.0095 0.0125 0.0190 0.0159
Combination 0.0030 0.0078 0.0157 0.0209 0.0118

added during training are helpful in classifying the HOLOGIC image labels as
background instead of breast structures.

The style transfer method presents superior performance on the IMS
and PLANMED datasets, achieving the best IoU and Dice values for the
nipple, fibroglandular tissue, and fatty tissue. For the pectoral muscle, the
method presents results similar to the combination of the proposed methods.
The Hausdor� distance for the nipple is not the minimum because this
method tends to create noisy nipple regions in challenging cases, such as
the example shown in the last row of Figure 6.3. These noisy regions do
not represent an extensive area and can be easily removed in post-processing.
While the style transfer method demonstrates superior performance on the IMS
and PLANMED datasets, it exhibits inferior results compared to the image
manipulation method on the HOLOGIC dataset. We can see significantly
lower IoU values and higher Hausdor� distances for the nipple structure,
potentially a�ecting applications where accurate nipple localization is critical.
Figure 6.4 corroborates the latter, revealing misclassified regions like the image
label, which was erroneously classified as nipple or fatty tissue instead of the
background.

The combination method o�ers a balance between the two approaches.
Upon examining the complete metrics across all four test datasets, we observe
that this method consistently achieves the best or near-best numerical results.
It leverages the strong generalization capabilities of the image manipulation
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Figure 6.2: Visual results on the IMS dataset. Each row represents a di�erent
case. First column: input image. Second column: baseline result. Third column:
image manipulation result. Fourth column: style transfer result. Fifth column:
image manipulation and style transfer combination result. Sixth column:
ground-truth annotation.

method on HOLOGIC images while benefiting from the e�ective generalization
of the style transfer method on IMS and PLANMED images. Further, from
Figures 6.1, 6.2, 6.3, and 6.4, we can notice consistent results with less noise,
making this method the best choice for integration in the clinical practice.

6.4
Uncertainty analysis

Figure 6.5 shows the uncertainty maps of the three proposed methods
and the baseline method on four images from the HOLOGIC dataset. Notice
how the proposed strategies minimize the uncertainty regions compared to the
baseline, concentrating them at the prediction boundaries. This indicates that
the trained models are more confident and reliable when processing this kind
of image. A similar behavior occurs when processing the IMS and PLANMED
images.
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Table 6.3: Numerical results on the PLANMED dataset

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Precision

Baseline 0.9463 0.9826 0.7816 0.9688 0.9198
Image manipulation 0.7940 0.9691 0.8525 0.9143 0.8825

Style transfer 0.9204 0.9705 0.9001 0.9116 0.9256
Combination 0.9291 0.9790 0.8661 0.9329 0.9268

Recall

Baseline 0.7352 0.9597 0.9878 0.6091 0.8229
Image manipulation 0.5990 0.9901 0.9715 0.7863 0.8367

Style transfer 0.8119 0.9903 0.9357 0.8495 0.8969

Combination 0.7834 0.9866 0.9656 0.8027 0.8846

Accuracy

Baseline 0.9989 0.9946 0.9493 0.9422 0.9713
Image manipulation 0.9982 0.9959 0.9668 0.9607 0.9804

Style transfer 0.9991 0.9963 0.9713 0.9674 0.9835

Combination 0.9990 0.9965 0.9689 0.9648 0.9823

Dice

Baseline 0.8132 0.9700 0.8693 0.7395 0.8480
Image manipulation 0.6549 0.9789 0.9061 0.8420 0.8455

Style transfer 0.8506 0.9798 0.9151 0.8753 0.9052

Combination 0.8327 0.9824 0.9113 0.8592 0.8964

IoU

Baseline 0.7015 0.9432 0.7736 0.5962 0.7536
Image manipulation 0.5198 0.9596 0.8308 0.7306 0.7602

Style transfer 0.7521 0.9611 0.8455 0.7809 0.8349

Combination 0.7325 0.9659 0.8389 0.7560 0.8233

Hausdor�

Baseline 0.0196 0.0170 0.0292 0.0214 0.0218
Image manipulation 0.0059 0.0089 0.0169 0.0184 0.0126

Style transfer 0.0073 0.0075 0.0147 0.0172 0.0117
Combination 0.0025 0.0071 0.0167 0.0185 0.0112

Table 6.4: Numerical results on the HOLOGIC dataset

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Precision

Baseline 0.4805 0.9963 0.8664 0.7193 0.7656
Image manipulation 0.6903 0.9786 0.8986 0.8425 0.8525

Style transfer 0.7126 0.9816 0.9230 0.8079 0.8563
Combination 0.7138 0.9846 0.8984 0.8488 0.8614

Recall

Baseline 0.1545 0.7705 0.7212 0.5058 0.5380
Image manipulation 0.8535 0.9584 0.9272 0.8306 0.8924

Style transfer 0.7060 0.9477 0.9062 0.8510 0.8527
Combination 0.8620 0.9545 0.9308 0.8258 0.8933

Accuracy

Baseline 0.9981 0.9785 0.9169 0.8994 0.9482
Image manipulation 0.9990 0.9946 0.9628 0.9529 0.9773

Style transfer 0.9988 0.9933 0.9633 0.9487 0.9760
Combination 0.9991 0.9947 0.9631 0.9532 0.9775

Dice

Baseline 0.2245 0.8467 0.7826 0.5850 0.6097
Image manipulation 0.7295 0.9673 0.9085 0.8283 0.8584

Style transfer 0.6647 0.9621 0.9107 0.8212 0.8397
Combination 0.7501 0.9685 0.9103 0.8287 0.8644

IoU

Baseline 0.1463 0.7677 0.6487 0.4192 0.4955
Image manipulation 0.5901 0.9377 0.8349 0.7105 0.7683

Style transfer 0.5246 0.9302 0.8376 0.7007 0.7483
Combination 0.6174 0.9398 0.8375 0.7111 0.7764

Hausdor�

Baseline 0.0454 0.0298 0.0326 0.0314 0.0347
Image manipulation 0.0049 0.0168 0.0180 0.0211 0.0152

Style transfer 0.0398 0.0181 0.0174 0.0348 0.0275
Combination 0.0050 0.0163 0.0175 0.0213 0.0150

6.5
Screen-film mammography results

The presented approaches focus on digital mammography images, which
represent the prevailing technology in contemporary practice. However, screen-
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Figure 6.3: Visual results on the PLANMED dataset. Each row represents
a di�erent case. First column: input image. Second column: baseline result.
Third column: image manipulation result. Fourth column: style transfer result.
Fifth column: image manipulation and style transfer combination result. Sixth
column: ground-truth annotation.

film mammography remains in use across numerous medical centers, with ex-
tensive repositories established around this technology. The screen-film mam-
mography images exhibit significant di�erences compared to digital mammog-
raphy images, presenting challenges in their processing with the proposed mod-
els. Figure 6.6 presents the predictions of the baseline and the combination
methods on screen-film mammography from the DDSM dataset [54]. We can
see how both methods present limitations when processing these images. Nev-
ertheless, the combination method seems to be more stable and robust in this
data.

6.6
Comparison for pectoral muscle segmentation

In [1], a deep learning-based approach is introduced for segmenting the
pectoral muscle and breast in mammography images. The authors utilize a
diverse dataset comprising mammography images from various vendor equip-
ment, coupled with an aggressive augmentation procedure, to enhance gen-



Chapter 6. Results 42

Figure 6.4: Visual results on the HOLOGIC dataset. Each row represents
a di�erent case. First column: input image. Second column: baseline result.
Third column: image manipulation result. Fourth column: style transfer result.
Fifth column: image manipulation and style transfer combination result. Sixth
column: ground-truth annotation.

eralization performance. In contrast to this approach, we focus on a dataset
exclusively comprising GE images and extend the segmentation task to include
additional structures of interest. Nonetheless, a comparative analysis can be
conducted for the segmentation of the pectoral muscle on an unseen dataset,
such as the HOLOGIC dataset employed in our experiments. Table 6.5 presents
the numerical results on the pectoral muscle segmentation task, comparing the
performance of both [1] and our combination method. Notice how our method
achieves significantly superior metric values, demonstrating that it is more ro-
bust and confident for this task. Further, Figure 6.7 shows some visual results,
where we can see that our method is more consistent in predicting a single
compact shape for the pectoral muscle, while the other presents noisy and
incomplete predictions.

6.7
Extension to the CC view

Although the presented experiments focus on the MLO view, our methods
can be easily extended for the CC view. To show this adaptability, we selected
the CC view mammography segmentation dataset introduced in [6] for training
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Figure 6.5: Uncertainty maps. Each column represents a di�erent case. First
row: baseline model. Second row: image manipulation. Third row: style trans-
fer. Fourth row: image manipulation and style transfer combination.

Table 6.5: Numerical results for pectoral muscle segmentation on the HO-
LOGIC dataset

Method Dice IoU
Haus-

dor�

[1] 0.8822 0.8145 0.0301
Ours 0.9685 0.9398 0.0163

and evaluation. This dataset consists of 5137 fully annotated GE images, where
3737, 943, and 457 images are considered for the training, validation, and test
sets, respectively. Additionally, for the generalization evaluation, we consider
a test set that consists a set of 34 fully-annotated HOLOGIC images. In both
datasets, the same structures of interest presented in the previous sections are
considered.

We train a baseline model on the GE images using the same settings
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Figure 6.6: Results on screen-film mammography images from the DDSM
dataset. Each column represents a di�erent case. First row: input image. Sec-
ond row: baseline. Third row: image manipulation and style transfer combina-
tion.

considered for the MLO view segmentation training. Then, leveraging our
image manipulation method, we train another model using the same training
settings as the CC view baseline model. Tables 6.6 and 6.7 present the
numerical results on the GE and HOLOGIC test sets, respectively. Similarly to
the behavior noticed for the MLO view, our method presents better results on
the CC view HOLOGIC images while preserving the performance on the CC
view GE images. Figure 6.8 shows some visual results on HOLOGIC images,
confirming the superior performance of our method on the processing of CC
view images, even in the challenging segmentation of the pectoral muscle [59].

6.8
Using transformer-based models

Our approaches to improving the generalization of our models have
primarily utilized U-Nets. To enhance the scope of our comparisons, we will
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Figure 6.7: Pectoral segmentation comparison on the HOLOGIC dataset. Each
column represents a di�erent case. First row: results of the trained model
introduced in [1]. Second row: results of the proposed combination method.
Third row: ground-truth annotation.

Table 6.6: Numerical results on CC view GE images

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Dice Baseline 0.8610 0.3998 0.9569 0.9103 0.7820

Image manipulation 0.8473 0.3870 0.9543 0.9083 0.7742

IoU Baseline 0.7731 0.8289 0.9194 0.8417 0.8408

Image manipulation 0.7567 0.8456 0.9151 0.8380 0.8389

Hausdor� Baseline 0.0003 0.0008 0.0022 0.0023 0.0015

Image manipulation 0.0003 0.0009 0.0022 0.0024 0.0016

Table 6.7: Numerical results on CC view HOLOGIC images

Metric Method Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Dice Baseline 0.1632 0.3059 0.8259 0.6608 0.4889
Image manipulation 0.6990 0.4136 0.8767 0.8108 0.7000

IoU Baseline 0.1011 0.5331 0.7070 0.4949 0.4590
Image manipulation 0.5613 0.7126 0.7865 0.6850 0.6863

Hausdor� Baseline 0.0500 0.0117 0.0262 0.0356 0.0341
Image manipulation 0.0032 0.0053 0.0250 0.0247 0.0167

now explore segmentation models based on Transformer networks, diverging
from the neural network architectures we used before.

Transformer networks have recently gained popularity, particularly in
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Figure 6.8: Visual results on CC view HOLOGIC images. Each column
represents a di�erent case. First row: input image. Second row: baseline result.
Third row: image manipulation result. Fourth row: ground-truth annotation.

Natural Language Processing (NLP) tasks, such as text generation using
large language models. Unlike traditional methods, Transformers leverage the
self-attention mechanism to process data correlations in parallel, rather than
sequentially. This approach allows the model to identify and focus on the most
pertinent parts of the data over extended sequences.

While Transformers were originally developed for language-related ap-
plications, recent advancements have expanded their use to image processing.
Vision Transformers (ViTs) and SegFormers are notable adaptations of Trans-
former architecture for visual data and semantic segmentation, respectively. In
this section, we will compare the performance of our current approach (U-Net)
against that of a SegFormer architecture.

To train the SegFormer model, we utilized a stylized dataset created using
the style transfer technique. Additionally, we applied basic transformations
such as cropping and rotation to augment the data. The model was trained on
top of the pre-trained ADE20K dataset at a resolution of 512x512, provided
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by NVIDIA on Hugging Face [60].

6.8.1
SegFormer tranning

This section aims to provide a succinct comparison between transformer-
based models and our current approach.

To train the SegFormer model, we employed a stylized dataset created
through style transfer techniques. Additionally, we applied basic data augmen-
tation methods such as cropping and rotation. The model was fine-tuned on
a pre-trained SegFormer base model, initially trained on the ADE20K dataset
at a resolution of 512x512, as provided by NVIDIA on Hugging Face [60].

Our dataset was processed using the default feature extractor from the
aforementioned dataset, specifically designed for 512x512 images. However,
due to technical limitations in our development environment and potential
high computational costs, we resized the images to 128x128.

Unlike our U-Net models, which were trained with the entire dataset
at once, we trained the SegFormer model in batches using data from di�erent
styles. Given our technical constraints, we trained the model over 25 epochs for
each batch. The results of these training sessions are presented in the following
section.

6.8.2
SegFormer Results

Table 6.8: SegFormer evaluation over di�erent metrics

Metric Dataset Nipple
Pec-

toral

Fib.

Tissue

Fat.

Tissue
Mean

Precision

GE 0.69 0.93 0.97 0.70 0.82
HOLOGIC 0.37 0.93 0.93 0.74 0.74
PLANMED 0.85 0.97 0.93 0.82 0.89

IMS 0.77 0.95 0.95 0.80 0.87

Recall

GE 0.61 0.99 0.79 0.90 0.82
HOLOGIC 0.15 0.97 0.81 0.83 0.69
PLANMED 0.53 0.97 0.87 0.84 0.80

IMS 0.63 0.97 0.81 0.83 0.81

Accuracy

GE 0.61 0.99 0.79 0.90 0.82
HOLOGIC 0.15 0.97 0.81 0.82 0.64
PLANMED 0.53 0.97 0.87 0.84 0.80

IMS 0.63 0.97 0.81 0.83 0.81

Dice

GE 0.72 0.50 0.32 0.25 0.45
HOLOGIC 0.32 0.49 0.32 0.25 0.35
PLANMED 0.65 0.49 0.33 0.25 0.43

IMS 0.73 0.49 0.32 0.25 0.45

IoU

GE 0.50 0.91 0.77 0.65 0.71
HOLOGIC 0.12 0.90 0.76 0.63 0.60
PLANMED 0.50 0.94 0.81 0.70 0.74

IMS 0.51 0.92 0.77 0.69 0.72
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As observed during the experiments across di�erent metrics and datasets,
the performance of SegFormers was inferior to the best methods using U-Net.
However, it is important to note that this does not imply that SegFormers
cannot perform better in our dataset. It is crucial to remember that the
SegFormer model was trained for significantly fewer epochs, approximately
10 percent of the training performed on the U-Net models.

Overall, with more time and resources, further exploration of SegFormers
may lead to the development of a superior solution and a more generalized
model.



7
Conclusion

We address the challenge of segmenting landmark structures in mam-
mography images, which is crucial for breast cancer assessment. Our approach
considers data-centric strategies to enrich training data for deep learning-based
segmentation. This involves augmenting training samples through annotation-
guided image intensity manipulation and style transfer to improve generaliza-
tion beyond conventional training methods.

Our findings demonstrate the e�ectiveness of the proposed methods in
achieving improved generalization across various vendor equipment, even when
considering training data from a single vendor. This approach avoids the need
to generate new training images and manual annotations, thus reducing labor
costs and saving time in clinical settings.

Although our evaluations are based on a limited number of di�erent ven-
dor equipment, the corresponding images represent the most diverse samples
compared to those used for training, i.e. GE images. We expect the trained
models to perform even better on images that closely resemble the GE images,
such as those generated by Siemens or Fujifilm equipment.

We present visual results on screen-film mammography images, demon-
strating a subtle enhancement achieved by the proposed method compared
to the baseline. However, the predictions include noisy structures, requiring
further post-processing operations to achieve a reliable segmentation. Further
exploration of generalization across this domain and other image settings re-
mains an open problem that we plan to address in future work.

Our assessment of CC view images demonstrates the applicability of
the image intensity manipulation method to this domain. We expect that the
style transfer method and the combination of both will exhibit similar e�cacy.
However, further investigation is needed, including an evaluation of pectoral
muscle detection, which is challenging in the CC view.

Regarding the Segformer, we still have a long way to go. The preliminary
results have shown promise, especially considering how little training was
necessary to produce average results. Moving forward, we might want to train
this model on more powerful machines for a longer period.

While we highlighted the importance of segmenting landmark structures
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for assessing cancer risk and image acquisition adequacy, our experiments do
not directly evaluate the e�cacy of the proposed methods for these tasks. In
future work, we aim to explore these applications and others using them.
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